Airy wave packets accelerating in space-time
نویسندگان
چکیده
Although diffractive spreading is an unavoidable feature of all wave phenomena, certain waveforms can attain propagation-invariance. A lesser-explored strategy for achieving optical selfsimilar propagation exploits the modification of the spatio-temporal field structure when observed in reference frames moving at relativistic speeds. For such an observer, it is predicted that the associated Lorentz boost can bring to a halt the axial dynamics of a wave packet of arbitrary profile. This phenomenon is particularly striking in the case of a self-accelerating beam – such as an Airy beam – whose peak normally undergoes a transverse displacement upon free-propagation. Here we synthesize an acceleration-free Airy wave packet that travels in a straight line by deforming its spatio-temporal spectrum to reproduce the impact of a Lorentz boost. The roles of the axial spatial coordinate and time are swapped, leading to ‘time-diffraction’ manifested in self-acceleration observed in the propagating Airy wave-packet frame.
منابع مشابه
Accelerating finite energy Airy beams.
We investigate the acceleration dynamics of quasi-diffraction-free Airy beams in both one- and two-dimensional configurations. We show that this class of finite energy waves can retain their intensity features over several diffraction lengths. The possibility of other physical realizations involving spatiotemporal Airy wave packets is also considered.
متن کاملNondiffracting accelerating wave packets of Maxwell's equations.
We present the nondiffracting spatially accelerating solutions of the Maxwell equations. Such beams accelerate in a circular trajectory, thus generalizing the concept of Airy beams to the full domain of the wave equation. For both TE and TM polarizations, the beams exhibit shape-preserving bending which can have subwavelength features, and the Poynting vector of the main lobe displays a turn of...
متن کاملObservation of accelerating Airy beams.
We report the first observation of Airy optical beams. This intriguing class of wave packets, initially predicted by Berry and Balazs in 1979, has been realized in both one- and two-dimensional configurations. As demonstrated in our experiments, these Airy beams can exhibit unusual features such as the ability to remain diffraction-free over long distances while they tend to freely accelerate d...
متن کاملCausality effects on accelerating light pulses.
We study accelerating and decelerating shape-preserving temporal Airy wave-packets propagating in dispersive media. We explore the effects of causality, and find that, whereas decelerating pulses can asymptotically reach zero group velocity, pulses that accelerate towards infinite group velocity inevitably break up, after a specific critical point. The trajectories and the features of causal pu...
متن کاملAiry–Bessel wave packets as versatile linear light bullets
The generation of spatiotemporal optical wave packets that are impervious to both dispersion and diffraction has been a fascinating challenge1. Despite intense research activity, such localized waves, referred to as light bullets, have remained elusive. In nonlinear propagation, three-dimensional light bullets tend to disintegrate as a result of inherent instabilities2,3. Threedimensional wave ...
متن کامل